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Summary 
 
The use of graph-space optimal transport within full-waveform inversion (FWI) has recently been 

proposed to enhance robustness to cycle-skipping. In this paper, we discuss several features of the 
graph-space optimal transport FWI, emphasizing in particular its ability to detect time shifts between 

modelled and observed data and its characteristics in terms of adjoint source (the signal back-

propagated from the receiver side during the iterative optimization process). Our analysis is driven by 
finding an optimal adjoint-source that is robust to cycle-skipping. This leads us to propose an 

alternative graph-space-inspired scheme called enhanced kinematic transform FWI. Our approach 

involves a modification of the adjoint-source introducing a partial shift strategy, allowing to highlight 

the kinematic information. We illustrate the enhanced robustness with respect to cycle-skipping on 
synthetic and field datasets with comparison to conventional FWI, Kantorovich-Rubinstein optimal 

transport FWI and graph-space optimal transport FWI. 
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Optimal transport FWI with graph transform: Analysis and proposal of a partial shift strategy 

Introduction 

Conventional full-waveform inversion (FWI) is based on a least squares (LS) misfit function, which 

has proven to be effective for high-resolution velocity model building (VMB). However, LS FWI is 

plagued by cycle-skipping, so that the local optimization process requires starting from a good initial 

model. Many alternative misfit functions have been proposed to mitigate this issue. Among those, 

misfits based on the optimal transport (OT) theory recently aroused attention in geophysics.  Métivier 

et al. (2016), proposed to use the Kantorovich-Rubinstein (KR) norm-based version of OT, inspired 

from a 1-Wasserstein distance, which allows considering seismic data directly without any 

transformation. Encouraging results were obtained on several real datasets using KR in FWI (see for 

example, Messud et al. (2019), Sedova et al. (2019) and Hermant et al. (2020)).  

More recently, Métivier et al. (2018) proposed a complementary OT version based on a 2-Wasserstein 

distance together with a specific positive transformation of the data called “graph transform”. The 

resulting graph space (GS) OT formalism allows to somewhat “shift” events contained in the data 

(whereas KR enhances the kinematics information without shifting the events), in the spirit of dynamic 

warping FWI (Wang et al., 2016), giving robustness with respect to cycle-skipping. Encouraging results 

were obtained by Métivier et al. (2018), Provenzano et al. (2020) and Pladys et al. (2020). 

Following the latter work, we discuss in this article several features of GS FWI. We emphasize how GS 

OT allows to detect a change of kinematics between the modelled and observed data, and that its 

robustness to cycle-skipping seems equivalent to that of KR FWI. We then propose a partial shift 

strategy and the “enhanced kinematic transform” (EKT) method to further focus the adjoint-source on 

the kinematic information, and obtain yet more robustness to cycle-skipping. We illustrate our points 

on synthetic and field datasets. 

Classical LS and OT (KR, GS) misfits 

The data space is discretized through a vector 𝒙:={𝑥𝑖, 𝑖 = 1 ⋯ 𝑀} that describes the time and receiver

positions. The dependency to shot position is assumed implicitly. For each shot, we denote 𝒅𝑜𝑏𝑠: =
{ 𝑑𝑜𝑏𝑠(𝑥𝑖), 𝑖 = 1 ⋯ 𝑀} the observed data vector and 𝒅: = {𝑑(𝑥𝑖), 𝑖 = 1 ⋯ 𝑀}  the data vector modelled

using a subsurface model. For a misfit 𝐽(𝒅𝑜𝑏𝑠, 𝒅), the data-space gradient 𝛿𝐽/𝛿𝒅 defines the adjoint-

source, translated into the velocity-space gradient via the adjoint-state method. The LS misfit is 

𝐽𝐿2
(𝒅𝑜𝑏𝑠, 𝒅) =

1

2
∆𝒅 ∙ ∆𝒅  where     ∆𝒅 = 𝒅𝑜𝑏𝑠 − 𝒅.  (1) 

The LS adjoint-source equals the data residual ∆𝒅. The KR adjoint-source can be viewed as a smart 

processing of ∆𝒅 that gives robustness to cycle-skipping by enhancing the low-frequency content and 

reducing the amplitude dynamics. It is defined as the argmax of the problem (Métivier et al, 2016b) 

𝐽𝐾𝑅(𝒅𝑜𝑏𝑠, 𝒅) = max𝝋 𝝋. ∆𝒅   s. t.  |𝜑(𝑥𝑖) − 𝜑(𝑥𝑗)| ≤ ‖𝑥𝑖 − 𝑥𝑗‖
1

  &  |𝜑(𝑥𝑖)| ≤ 𝐾.  (2) 
 

Complementarily, Métivier et al. (2018) proposed the GS OT formulation based on the 2-Wasserstein 

distance together with a specific positive transformation of the data called “graph transform”, where 

data amplitudes are nested with the corresponding data positions. For computational purposes, each 

data trace is considered independently; hence we consider now the discrete time positions denoted by 

𝒕: = {𝑡𝑖, 𝑖 = 1 … 𝑁} instead of 𝒙. The modelled and observed data traces are viewed as two clouds of

points (𝑡𝑖, 𝑑(𝑡𝑖)) and (𝑡𝑗, 𝑑𝑜𝑏𝑠(𝑡𝑗)) of uniform mass. The OT problem can then be recast into

𝐽𝐺𝑆((𝒕, 𝒅𝑜𝑏𝑠), (𝒕, 𝒅)) = min
𝛔∈𝑆(𝑁)

∑ 𝑐𝑖𝜎𝑖
,     with     2 𝑐𝑖𝑗 = |𝑡𝑗 − 𝑡𝑖|

2
/𝑡𝑁

2 + 𝛼2|𝑑𝑜𝑏𝑠(𝑡𝑗) − 𝑑(𝑡𝑖)|
2

𝑖=1,𝑁

. (3) 

𝑆(𝑁) denotes the set of permutation of a vector of dimension 𝑁 and 𝑐𝑖𝑗 the transportation cost from the

modelled data sample 𝑖 to the observed data sample 𝑗. The weighting parameter 𝛼 is used to control the 

amount of data displacement along the time axis. Denoting by 𝝈∗ the optimal permutation, computed

using the auction algorithm of Bertsekas et al. (1989), the GS adjoint-source reads (Métivier et al. 2018) 
𝛿𝐽𝐺𝑆

𝛿𝒅
= 𝛼2 ∆𝒅̃  where  ∆𝒅̃ = 𝒅̃𝑘𝑖𝑛 − 𝒅  and 𝑑̃𝑘𝑖𝑛(𝑡𝑖): = 𝑑𝑜𝑏𝑠(𝑡𝜎𝑖

∗).  (4) 

Interestingly, the GS adjoint-source residual Δ𝒅̃ looks like the LS residual ∆𝒅, with the difference that 

a time or kinematic transformation of the observed data has been performed. In other terms, events 
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contained in the data are “shifted”, which gives robustness to cycle-skipping, in the spirit of dynamic 

warping FWI (Wang et al., 2016).  

Conventional GS FWI interest and problematics 

The main GS parameter 𝛼 plays a crucial role. For 𝛼 → 0 the minimization problem in Equation 3 leads 

to an adjoint-source residual that tends to the LS residual, i.e. Δ𝒅̃ → Δ𝒅. The other extreme case, 𝛼 →
∞, allows a large displacement of data along the time axis in order to reduce the amplitude term 

(|𝑑𝑜𝑏𝑠 − 𝑑|2) in Equation 3 (Métivier et al., 2018) but the adjoint-source residual Δ𝒅̃ in Equation 4 then

tends to vanish and become useless (see Figure 1c). To avoid this pathological behaviour, we observed 

that the parameter 𝛼 must be chosen very small in practice, as concluded in Métivier et al. (2018), 

leading to a “perturbation” of the LS residual shown in Figures 1a and 1b. 

We tested the GS scheme on the 2D Marmousi 2 dataset created in the constant-density acoustic 

approximation with a Ricker source centred on 6 Hz. We used a preconditioned L-BFGS optimization 

scheme for the FWI optimization process. We run 30 FWI iterations performed directly at 10 Hz, 

keeping all the data (first break, reflections, multiples…). Starting with an initial velocity model where 

LS is cycle-skipped, Figure 2a shows that both KR and GS overcome this issue. However, in the more 

difficult configuration of Figure 3 where a perturbation is added to the shallow layer in the initial model, 

both GS and KR fail. Interestingly, we observed in our tests a comparable robustness to cycle-skipping 

between KR and GS.  

Beyond conventional GS using a partial shift, and EKT scheme 

We now intend to address the pathological situation of vanishing GS adjoint-source residual Δ𝒅̃ for 

large amount of data displacement along the time axis value, i.e. large value of 𝛼. The hope is to become 

even more robust to cycle-skipping since the valley of convexity of the GS misfit with respect to time 

shift enlarges with 𝛼 (illustration in Métivier et al. (2018) for two shifted Ricker wavelets). The strategy 

that we propose is to change the definition of 𝑑̃𝑘𝑖𝑛 in the adjoint-source residual ∆𝒅̃  of Equation 4 by

𝑑̃𝑘𝑖𝑛 (𝑡𝑖 + 𝛽(𝑡𝜎𝑖
∗ − 𝑡𝑖)) = 𝑑𝑜𝑏𝑠(𝑡𝜎𝑖

∗).                                                                                          (5)

Taking 𝛽 = 0 would lead to the conventional GS adjoint-source residual. Taking 𝛽 = 1 would lead to 

the LS residual. Interestingly, a choice of 𝛽 ∈ (0,1) leads to a “partial shift” and makes clear that GS 

defines a form of kinematic transform (KT), in the spirit of dynamic warping FWI (Wang et al., 2016). 

Considering a large value for 𝛼 is now possible without creating a null ∆𝒅̃ thanks to the partial shift 

ratio 𝛽. This is illustrated in Figure 1d in contrast to Figure 1c.  

To enhance even more the KT, we propose another definition of 𝑑̃𝑘𝑖𝑛 in Equations 4 and 5 based on the 

synthetic data (still considering ∆𝒅̃ in Equation 4 as the adjoint-source residual to be back-propagated) 

𝑑̃𝑘𝑖𝑛 (𝑡𝜎𝑖
∗ + 𝛽(𝑡𝑖 − 𝑡𝜎𝑖

∗)) = 𝑑(𝑡𝑖).                                                                                             (6)

For 𝛽 = 0, this definition involves applying the transpose of the permutation vector to the modelled 

data (and not the permutation vector to the observed data like in Equation 5; indeed 𝜎∗ only occurs in

the left hand side of Equation 6). A choice of 𝛽 ∈ (0,1) allows a partial shift strategy. The underlying 

idea is to use an adjoint-source residual Δ𝒅̃ that focuses more on the kinematics change comparing shifts 

between similar data (here the modelled one) and not on events missing in the modelled data, as 

illustrated in Figure 1e. The aim is to be more robust to cycle-skipping, especially at the very first FWI 

iterations. We call this GS-derived approach the EKT scheme and will give formal grounds to it (and 

to the point in next paragraph) in a further article. 

Note that the GS or EKT approaches can naturally be embedded in KR, replacing the residual ∆𝒅 in 

Equation 2 by the GS “residual” ∆𝒅̃ of Equation 4. One interesting advantage, by doing so, is to add 

the features of KR to EKT: enhanced low frequency content, amplitude balancing, stronger continuity 

in the move-out direction (KR) and “shifts” of events contained in the data (EKT), see Figure 1e, for 

even more robustness to cycle-skipping. Figure 2b shows that the EKT approach (embedded in KR) 

overcomes cycle-skipping better than GS and KR only on Marmousi when starting the FWI with the 

more difficult initial model. 

Application to a field dataset 

The Greater Castberg area of the Barents Sea is challenging for VMB: it contains faulted structures in 

the deeper part of the section and a lot of gas hydrates and chimneys in the shallow part. We used data 

from an acquisition performed with 8 km long variable depth streamers, delivering penetration of diving 
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waves down to 2.5 km. The FWI was run from 3 to 7 Hz. We started the update from an initial velocity 

model including gas pocket anomalies in the shallow (first 600 m). The deeper part however remains 

challenging, with an initial model that is smooth and inaccurate. Figure 3a compares GS FWI with KR 

and LS FWI, starting from the initial model (a). LS FWI fails to update the model correctly. Both KR 

and GS give a similar realistic velocity result providing a good fit between observed and modelled data. 

In a second test, we changed the initial model (a) by increasing slightly velocities in the deeper part (by 

adding a perturbation – see Figure 3b), making it harder for FWI to avoid the cycle-skipping. Figure 3b 

shows that LS, GS (and also KR not shown here) fail. On the other hand, the use of EKT at 3 Hz 

followed by GS from 4 to 7 Hz has provided a stable and a geologically-consistent resulting model (we 

observed in our tests that using EKT at the very first FWI iterations was sufficient for cycle-skipping). 

Conclusion 

We presented a GS FWI implementation and noticed on synthetic and field data tests that the robustness 

to cycle-skipping seems equivalent to KR FWI. To go beyond this, we introduced a partial shift strategy 

within GS, leading to the kinematic transform concept. On this basis, we proposed the EKT method to 

better focus the adjoint-source on the kinematic information. We have illustrated on synthetic and field 

datasets the interest to use EKT at the very first FWI iterations for more robustness to cycle-skipping.  
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Figure 1 Different Marmousi adjoint-sources, zoomed in the diving waves area, in the initial model of 

Figure 2 (b). GS (𝛼 =0.04) only slightly changes the kinematics of the events compared to the LS 

residual. The partial shift approaches (𝛼 =1.2, 𝛽=0.5) produce more changes in the kinematics of the 

events, and EKT allows to put “more weight” on the diving waves. 
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Figure 2 Marmousi 2 velocity models. 30 FWI iterations performed directly at 10Hz, keeping all the 

data. (a) Starting the FWI with an initial model where LS is cycle-skipped. (b) Starting the FWI with an 

initial model more perturbed in the shallow layer (underlined by the arrows) where LS, KR and GS are 

cycle-skipped. Initial models are represented in percentage of perturbation of the true model. 

Figure 3 Inverted velocity models by 3 to 7 Hz FWI and data fit QCs (with shot position at the white 

line). (a) Starting the FWI with a model which contains already gas pocket anomalies in the shallow. 

LS is cycle-skipped, whereas GS and KR are not. (b) Starting the FWI with a model where the velocity 

has been slightly increased in the deeper part compared to initial model (a), LS, GS (and KR not shown 

here) are cycle-skipped, whereas starting with EKT is not. 


