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can be applied, and the figures need to be located before they can 
be classified. The automated pipeline is run on a user-specified 
dataset, which can consist of various file types, such as PDF, 
Word doc, Excel and CSV, and different image files, such as TIFF 
and PNG, etc. After initial ingestion, each of the components will 
be triggered in turn automatically as soon as its dependencies 
have completed successfully.

There are two advantages to our automated approach. 
Metadata in the file path or manual labelling can only support a 
single high-level label. Using the pipeline, a much more granular 
classification of the contents can be achieved at a paragraph or 
page object level. Secondly, many documents can be processed 
much more quickly. As an illustration, a previous project took 
16 people 14 months to complete, whereas a recent equivalent 
project using the pipeline took 2 people 1 month, including 
computing time. This is a hundred times faster!

This article will focus on the machine learning steps in our 
pipeline, namely document layout analysis, image classification, 
named entity recognition and table cell classification. In recent 
times, machine learning has become increasingly dominated by 
deep learning models. These are data-hungry algorithms that 
need to be trained on large volumes of labelled input data. For 
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Introduction
Each year the geoscience industry creates huge volumes of 
documents containing data, research, and plans, which describe 
valuable subsurface assets. These documents contain a wealth 
of knowledge in the form of text, figures, and tables which are 
intended to be read by humans and cannot be easily queried or 
extracted. It is important to incorporate all sources of data to 
create a holistic model of the subsurface and therefore reduce 
exploration and development risks. Key to the successful extrac-
tion and transformation of data is an understanding of the nature 
of the data that exists within a corpus of files. This is achieved 
by labelling files based on the data that they contain so that they 
can be grouped and prioritised for extraction. Some easy wins for 
labelling can be achieved in the case of well organised datasets 
where key information about the file is contained in its file path. 
However, this information is often not consistently captured and 
hence requires many search terms to group files. In less organised 
datasets it is often the case that key information is not captured 
within the path or is of insufficient detail to provide a useful 
label. In these cases, the only solution to reliably classify files 
is to manually open and review each document in turn. This is 
feasible for a small number of files but as dataset sizes grow, 
the time required to understand what is contained in a dataset 
increases dramatically.

For large datasets, it would be more efficient to develop an 
automated way to find the key terms within a piece of text, identify 
the figures and tables on a page, and classify the document, in order 
to help domain experts explore the vast document landscape.

In recent years, there have been huge advances in machine 
learning, computer vision, and natural language processing 
(NLP). These disciplines are concerned with the develop-
ment of algorithms that enable machines to understand images 
and human-written languages. In this article, we discuss how 
machine learning is used at CGG to classify documents. Machine 
learning models are just one component of a larger pipeline 
which includes other data classification, data extraction, and 
data curation technologies. The pipeline can be described by 
a directed acyclic graph (DAG). See the example in Figure  1, 
which sets out the components or steps in the pipeline as well as 
the dependencies between each component. A dependency arises 
when a step requires the output of other steps. For example, the 
text on a page of a document needs to be extracted (using optical 
character recognition (OCR), for example) before an NLP model 

1 CGG
* Corresponding author, E-mail: chinhang.lun@cgg.com

DOI: 10.3997/1365-2397.fb2022016

Figure 1 An example of a DAG describing the classification pipeline. The workflow 
starts from the top and an arrow indicates the direction of the flow of data.
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There are many publicly available datasets for document 
layout analysis; the largest ones being PubLayNet (Zhong et al., 
2019) and DocBank (Li et al., 2020). However, these datasets 
were drawn from a narrow range of sources: the former from 
medical papers in PubMed and the latter from physics, mathe-
matics, and computer science papers from arXiv. Moreover, they 
are all LaTeX-generated and relatively new, which means that 
examples from these datasets can look very different from the 
reports and papers in geology, which could be many decades old. 
It is therefore not surprising that the model pretrained on these 
datasets does not perform very well on geological documents. For 
this reason, we have created a new dataset by sampling a subset 
of document pages from our internal corpus and having them 
annotated by CGG domain experts.

The number of examples in our training set is insufficient to 
train a deep learning model from scratch, but we can fine-tune 
the model that was first trained on DocBank (or PubLayNet). 
One way of improving the performance of our model is to use 
more high-quality training data. However, as manually labelling 
a dataset is time-consuming, we have developed a method of gen-
erating synthetic document pages to complement our manually 
labelled dataset.

Training the model on our own dataset and then on the 
synthetic data greatly improves the performance compared to a 
model trained purely on the public dataset. Examples of predic-
tions made by our model are shown in Figure 2.

Image classification
Once the location of the figures has been identified, the figures 
are passed on to a computer vision model for classification. A 
figure  in a document can be a multitude of things, such as a 
graph, a seismic image, a core photo, or a thin section image, and 
each contains different types of information that would require 
a different process to extract useful data. Image classification is 
therefore a necessary step to allow the pipeline to automatically 
trigger the appropriate workflow to further process the image.

this reason, part of the discussion will focus on how we obtain 
high-quality training data to train our models. Finally, we discuss 
how we deploy the machine learning models and the pipeline to 
process documents at scale.

Document layout analysis
Documents in geoscience and geology are often complex, 
containing not only text but also figures and tables which often 
reference each other. A first step towards machine document 
understanding is the ability to identify the components, such as 
paragraphs of text, tables, figures, title, and the table of contents 
on each page of the document – a task called document layout 
analysis. The identified components can then be further processed 
by the appropriate algorithms, such as image classification and 
table cell classification for the figures and tables, respectively, 
which we will discuss in subsequent sections.

The document layout analysis task is performed with a 
computer vision algorithm. Computer vision is a scientific field 
that deals with computer understanding of images or a sequence 
of images. The goal is often to automate tasks, such as image 
recognition, instance segmentation, and object detection. This 
identification may come naturally to humans in most scenarios, 
but it can be difficult or even impossible to describe how they are 
accomplished. The task we will focus on is object detection which 
involves predicting the bounding box of an object in an image 
and classifying the object within the bounding box. In the context 
of document layout analysis, the image would be of a document 
page and the classes of objects would be paragraphs, tables, and 
figures, etc.

Since 2012, after a convolutional neural network (CNN) 
called AlexNet (Krizhevsky et al., 2012) won the ImageNet chal-
lenge, CNNs have been the go-to model in computer vision. In 
our workflow, a model called Faster R-CNN (Ren et al., 2015) is 
used. The model treats the task as a supervised machine learning 
problem, which means that the model is trained using images, 
together with the desired predictions for each training image.

Figure 2 Example predictions of object detection. The left-hand image shows the detection of paragraphs (red), lists (blue) and titles (light green). The right-hand image 
shows the detection of figures (dark green).
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Natural language processing
Natural language processing (NLP) is a set of methods that enable 
machines to process human-written languages. Examples of tasks 
include text generation, text summarisation, text classification, 
and named entity recognition (NER), the latter of which will be 
the focus of this article. NER is a task concerned with identifying 
spans of text which constitute a named entity. A named entity 
or entity is anything that can be referred to with a proper name, 
such as a person or location, but can also include numerical 
values, such as dates and measurements. A typical application in 
geology is to identify terms such as well names, formation names, 
biostratigraphic taxa, or certain scientific measurements.

State-of-the-art NLP models are now dominated by deep 
learning architectures, particularly transformer transformer-based 
models (Vaswani et al., 2017), such as BERT (Devlin et al., 
2019) and GPT-3 (Brown et al., 2020), which contain billions 
of parameters. They are typically first pretrained for the task of 
language modelling using billions of texts before being fine-tuned 
for a downstream task using typically a much smaller amount of 
data. Language modelling involves predicting the next word in a 
sentence given the previous word or sequence of words or, in the 
case of mask language modelling, predicting the missing words 
given its surrounding context. Training a model to do this from 

CNNs are the state of the art in image classification. An 
example is EfficientNet (Tan and Le, 2019). This is trained on 
labelled figures from CGG’s database of figures. Figures in geo-
science documents are often complex and a composite of multiple 
smaller figures of different types. We found it beneficial to first 
further locate the individual subfigures within a larger collection 
(see Figure 3) using an object detection model like the one used 
for document layout analysis before cropping the subfigures and 
feeding them into an image classification model.

With the different types of figures classified, the pipeline 
can then apply the appropriate algorithm to process the figure. In 
the case of core photos CGG has developed a machine learning 
model to predict the lithology of the core for each pixel in the 
image. This is performed by first segmenting the core from the 
background and then using the RGB values of each pixel of the 
isolated core to predict the lithology. This algorithm for process-
ing core images can be applied independently of the pipeline to 
raw collections of core images. In such a case, we take a reposito-
ry of core images at different depths, segment the core from each 
image, read the depth information from either the filename or by 
performing OCR on the core image, optionally stitch the core 
images together, and then run the lithology prediction. Figure 4 
shows a diagram of such a workflow.

Figure 3 Locating the constituent figures inside a 
larger figure. Each of the subfigures are then cropped 
and classified.

Figure 4 Left: The core is segmented from the 
background and stitched together. Right: A core 
sample and its predicted lithology; different lithologies 
are represented by different colours.
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a sentence into a vector. The vector for each individual word 
will vary depending on its surrounding words. We say that the 
model produces contextual embeddings of the words in the input 
sentence.

Often in geology and geoscience, the same word can have 
a very different meaning compared to its usage in everyday 
English. Good examples are the words ‘play’ and ‘well’. As a 
result, we have found it beneficial to further train a model for 
the language modelling task on our geological corpus so that the 
model can see the various usages of the more specialised scien-
tific terms. Pretraining on the geological corpus has increased the 
performance of the model on the downstream task of NER.

We treat NER as a supervised machine learning task which 
means that we need a labelled training dataset. As manually 
labelling many texts is time-consuming, we have developed an 
automated approach using as input our large geological corpus 
and our comprehensive taxonomy of terms that has been refined 
over the years by our domain experts. After the text has been 
extracted from the raw files, such as PDFs, string matching is 
performed on the extracted text to find occurrences of the tax-
onomy terms. We also complement this with rule-based pattern 
matching to tag anything not in the taxonomy, for example, using 
regular expressions to tag any well names which take the form 
NAME-NUMBER, such as ‘Well-1’. While string matching 
and pattern matching manage to find entities in the text, this is 
not exhaustive because there may be spelling mistakes in the 
taxonomy or errors in the OCR which prevent entities from being 
matched and owing to many variations in naming conventions, it 
is difficult to implement all possible patterns for matching. More 
importantly, a taxonomy and any rules-based system are static 
and cannot adapt automatically to new names and new naming 
conventions. All of this necessitates the use of NLP techniques 
which consider the meaning of the input text to recognise entities.

With the dataset created we fine-tune our geological cor-
pus-pretrained model to perform NER. Example predictions are 
shown in Figure 5. The model manages to identify entities that 

scratch requires a huge volume of text, but the good news is that 
there is no shortage of written text and no manual labelling is 
required because words in any sentence can be masked out.

Remarkably, experiments have shown that a single pretrained 
model can be fine-tuned to achieve a state-of-the-art performance 
on a wide variety of NLP tasks. One reason why these models 
are so effective is that by training a neural network for language 
modelling, it can learn to produce meaningful representations 
of words. To understand what this means, recall that for neural 
networks to be able to work with text, its constituent words need 
to be converted into numbers. Critical to the success of any NLP 
model is an encoding of words into numbers that are semantically 
meaningful. To illustrate this, consider a one-hot encoding of 
words in a fixed vocabulary of N words where each word is rep-
resented by an N-dimensional vector of zeroes with the exception 
of a single 1 in the ith position for the ith word. In this case, all 
the words will have a vector representation which are all equally 
spaced apart and therefore cannot capture any semantic meaning. 
Methods of generating word embeddings, such as Word2Vec 
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014), solve 
this by representing words as dense vectors in a lower dimension 
(compared with the size of the vocabulary) by using a supervised 
learning technique involving neural networks. The vectors pro-
duced by these techniques seem to be able to capture the semantic 
relationships within a language; it is possible to experiment with 
publicly available word embeddings and check the following 
and other similar analogies: let K, M, and W be the vectors for 
the word ‘king’, ‘man’ and ‘woman’ respectively then the result 
of K – M + W is approximately the vector for the word ‘queen’.

However, with word embeddings, each word is considered 
independent and will have the same vector representation, 
irrespective of the context. For example, the word ‘bank’ can 
mean a riverbank or a bank in which one deposits money but 
with Word2Vec and GloVe the word would have the same vector 
in both contexts. Transformer-based language models consider 
the entire sentence to map each word (tokens to be precise) in 

Figure 5 Example predictions on the test set. Labels 
with the suffix ‘NEW’ indicate that the entity is neither 
in the taxonomy nor found by pattern matching.
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spreadsheets. These can be categorised into three types: first, fea-
tures that are derived from just the cell itself, such as the number 
of characters in the cell, the percentage of the characters that are 
letters, digits, punctuations, or whitespace, whether the cell is 
purely numeric, whether the cell is empty as well as the row and 
column index of the cell. The second and third types of features 
are averages of the above features over cells in the same row and 
column respectively. A similar approach has been experimented 
in (Koci et al., 2019). In their work, the authors used features 
specific to Excel spreadsheets, such as whether the cell contains 
a formula. We decided not to use Excel-specific features since we 
want to keep our method sufficiently general so that it will also 
work for tables on a document page.

In the NLP approach, we treat the problem as a token clas-
sification task. More precisely, the contents in each of the cells 
are tokenised and all the tokens in each cell are fed into a deep 
neural network where the output is a classification of each token. 
The final classification of the cell is decided by a majority vote of 
its constituent tokens. The tokens are ordered row-wise, starting 
from the top-left most cell then proceeding along the row until the 
right-hand boundary of the spreadsheet and then continuing from 
the left-most cell on the row below. For the neural network, we 
used a language model called LayoutLM (Xu et al., 2020). This 
approach allows us to feed the row and column index of each cell 
into the model, thus incorporating the 2D structure of the table in 
the prediction, which would otherwise be ignored by the contents 
being treated as just a sequence of tokens. Example predictions 
are shown in Figure 7.

were not originally in the taxonomy and therefore provide a way 
for us to enrich our taxonomy.

Figure 6 shows an example of the key terms found in a 
document by string matching and by NER. These key terms can 
then be used to classify documents. Moreover, since we keep 
track of the location of where each term is found, we can achieve 
a more granular labelling of the document by classifying each 
paragraph individually.

Table cell classification
Tables and spreadsheets contain a wealth of data that are already 
in a structured but variable format. Transforming the contents of 
a table into useful data not only requires extracting the content of 
each individual cell, it also requires identifying the relationship 
between these cells. A first step is to identify the role a cell plays 
in the table. By knowing the header a data cell belongs to, it is 
possible to give meaning to the data and to infer facts. In the case 
of spreadsheets, as well as identifying cells in the table, we need 
to identify cells around it, such as notes and metadata, which may 
provide useful context to the table. It is also crucial to identify 
the headers in a table so that the table data can be merged with 
downstream processes.

We have explored two different approaches: one involving 
feature engineering and using traditional machine learning tech-
niques, and the other using natural language processing.

In the first approach, each cell is associated with a set of 
features which are fed into a model to classify the cell into one 
of the cell types. Features are computed from the contents of the 

Figure 6 Word cloud of the key terms found in one 
document by string matching against our taxonomy 
and by NER.

Figure 7 Example predictions of the table cell 
classification task. Green – Data, Red – Header, Teal – 
GroupHead, Orange – Title, Blue – Other.
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technology, we can achieve a more granular classification of the 
document contents and reduce project times significantly.
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Deployment
As mentioned in the introduction, vast volumes of documents 
have been produced over the years in the industry that will need 
to go through the machine learning pipeline. The success of any 
machine learning solution hinges on the ability to deploy the 
models at scale. Another important requirement is being able 
to automate the management of computing resources. By this, 
we mean the ability to schedule machines to run certain steps in 
the pipeline and automatically scale up/down machine learning 
models; we do not want engineers constantly monitoring usages 
and manually starting applications. In addition, details of those 
resources should be concealed from the pipeline end-users; they 
should not need to worry about allocating computing resources.

For deployment, we use Kubernetes, an orchestration system 
that automates the deployment, scaling, and management of con-
tainerised applications. To orchestrate the workflow and create 
the DAG we use Kubeflow which is built on top of Kubernetes. 
In Kubeflow, each component can have one or more inputs which 
are outputs from previous tasks. A task will not start unless its 
prerequisite task has completed successfully. Each task runs in a 
container that has been automatically created on a worker node in 
the cluster determined by Kubernetes according to the resource 
requirements for that task.

The advantage of using Kubernetes, apart from minimising  
the management of hardware, is that it is readily available in 
all major cloud services, such as Azure, AWS and GCP, as well 
as being installable on premises. What this means is that our 
machine learning pipeline solution is deployable with minimal 
changes on the previously mentioned cloud services as well as 
the existing hardware of our clients, provided Kubernetes can 
be installed on it. Running all the business logic in docker con-
tainers eliminates the need to install dependencies with every 
deployment. In fact, with a CI/CD pipeline we automatically 
build the docker images, run tests, and push the image to a 
container registry – internally and on the cloud. We build the 
images containing our code once and it can then be pulled many 
times from different locations.

Conclusion
In this article, we have described how machine learning is used in 
our pipeline to classify documents of various file types, such as 
PDF, Excel and CSV, and different image files. We have discussed 
how computer vision is used to identify the layout of a document 
page, and having done that, each constituent component is then 
further processed: figures and tables classified, and key terms 
identified from the extracted text. Furthermore, with the help of 
Kubernetes, documents can be processed at scale. By using this 


