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Cuttings Analysis
Using Machine Learning
Reduces Reservoir Uncertainty

By Ross Taylor, Chi Vinh Ly,
Aiguo Bian and Stephen Secrest

HOUSTON-Cuttings are a valuable and cost-effective source of subsurface
data from both vertical and lateral wells that is commonly overlooked in oil
and gas exploration and development drilling. Advancements in analytical
technologies have enhanced the data extraction from cuttings to provide key
subsurface insights, in lieu of core or sidewall core data.

However, there have always been challenges and uncertainties with sample
depth allocations and upscaling/downscaling the data to log resolution for
petrophysical analysis. This causes uncertainties throughout the subsurface
characterization process, affecting results at all scales. A new methodology
integrates high-resolution scanning electron microscopy (SEM) analysis with
machine learning techniques to allow for semi-autonomous lithotyping of in-
dividual cuttings-particles within each cuttings bag (typically representing
10-30 foot intervals) and their direct correlation with measured well logs.

This new workflow greatly reduces cuttings uncertainties through the spe-
ciation of bulk mineralogy back into the original rock types from which the
cuttings originate, helping upscale results to petrophysical models and
beyond. The result is an improved understanding of rock characteristics,
lithology and geologic heterogeneity along the wellbore to optimize completion
design. Moreover, by recalibrating representative cores, the technology
provides a cost-effective alternative to core analysis.
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The approach takes advantage of
SEM-based mineralogical analytical
tools, which combine the imaging capa-
bility of an SEM with energy dispersive
spectrometry (EDS) to provide both tex-
tural and elemental data. The value of
using SEM-EDS over traditional tech-
niques, such as X-ray diffraction (XRD)
and X-ray fluorescence (XRF), is that the
original rock texture of each cuttings par-
ticle is retained and collected. Figure 1(A)
shows an example of an output grey-scale
photomicrograph generated by the SEM,
while Figure 1(B) shows the equivalent
mineral map with each color representing
a different mineral species detected by
EDS analysis of the same area.

The calibration of lithotypes from cut-
tings against lithotypes from core data,
using both the mineralogical and textural
data, provides the crucial calibration and
upscaling data for this workflow. Core
description allows for qualitative assign-
ment of lithofacies over the cored inter-
val, harnessing quantitative continuous
data, such as core gamma ray, XRF
(hand-held) and CT density as well as
discrete data from plugs, such as petrog-
raphy/mineralogy and core analysis.
Continuous data allows for definition of

FIGURE 1

bed boundaries to delineate rock types
based on mineralogy and/or porosity dis-
tribution.

Lithotype-Based Analysis

Figure 2 shows the resolution at
which the reservoir can be appraised,
and the pitfalls of thin-bedded reser-
voirs. The benefit of characterizing cut-
tings data as lithotype proportions as
opposed to mineral volumes is that a di-
rect comparison can be made with the
lithofacies assigned in the core interval
to delineate net reservoir.

The CT density curve data, which ac-
quires data at 0.01-foot increments aver-
aging over 0.1-foot intervals, shows good
sensitivity to the porous sandstone beds.
Core gamma ray (GR) shows slightly
poorer resolution (0.1-foot increments
averaged over 0.5-foot intervals) with
some of the cleaner sandstone beds delin-
eated, but relatively poor definition be-
tween dense siltstone beds (similar GR
response) and mudstones. The log GR
shows almost no variation throughout the
illustrated short stratigraphic intervals.
Essentially the productive and nonpro-
ductive beds combine to form a solitary
response through the 10-foot interval. So,

how is it possible to assess reservoir het-
erogeneity in the absence of core and/or
FMI (formation micro imager) logs?
Quantitative analysis of cuttings, the
closest thing you can get to core, can pro-
vide a solution. The core-to-cuttings
lithotype calibration workflow is shown
in Figure 3, where core lithotypes are
used as seed testing for cuttings litho-
types classification. A lithotype model is
created by training a machine learning al-
gorithm to automatically assign litho-
types to cuttings based on similarity to
the training set. The benefit of this tech-
nique is that consistent lithotyping can
then be conducted on adjacent wells,
which do not have conventional core, and
where formation characterization other-
wise would have been purely reliant on
petrophysical log interpretation.

Machine Learning

The workflow was applied to train a
machine learning algorithm on a calibra-
tion well and its subsequent application
to a test well from an asset development
area in the Midland Basin in West Texas.
The machine learning lithotyping algo-
rithm was trained using the lithotypes de-
fined in the core and cuttings samples as

Backscattered Electron Image of Cuttings Samples from SEM-EDS (A) and Map of Detected Minerals (B)
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FIGURE 2

Lithotype Analysis of Thin-Bedded Reservoirs
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What does an average quartz content indicate in a 10 ft interval with
sand, calcareous sand, mudstone and limestone?

Unravelling this puzzle requires delineation of which lithotypes are
contributing to this quartz content.

Quantitative mineralogical analysis of individual particles within cut-
tings is the only method to hold the logs to account.
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Although 48.1% quartz was measured across all particles, only 20.3% good
reservoir was found in this interval comparable with the 24.0% picked out by
core. The majority of quartz is distributed in nonreservoir mudstones or cal-
careous lithotypes. Log GR would include whole 10 ft as net reservoir.

FIGURE 3

Schematic of Machine Learning Automated Lithotyping from Cuttings
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the seed classification. For the learning
process, only the cuttings-derived miner-
alogy and textural data (i.e., porosity)
was used as input, while the lithotypes
defined by a trained sedimentologist were
used as the target. The cuttings mineral
data was first scaled to ensure the ranges
were in line with the core training
dataset, before the data was run through
a multi-variant model analysis to deter-
mine the best permutation/combination
of classification models that generated
the highest match to core lithologies.

Classification models used for this
process included logistic regression,
random forest, decision tree, KNeigh-
bours, SVM and Gaussian Naive Bayes
algorithms. The random forest method
generated the highest match compared
with any other combination. So, for this
section of the well, this model was used
for further testing. However, this may
not hold true for other regions and other
formations, which is why the training
process is performed per formation
within a given region.

The random forest classifier was
tested in conjunction with principal com-
ponent analysis, and the number of com-
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ponents adjusted to optimize the classifi-
cation model’s performance. A key re-
quirement for training a machine learning
algorithm is a large volume of data. This
is one of the major advantages of using
cuttings, as each cuttings particle repre-
sents a potential training or testing data
point. With each sample containing hun-
dreds—if not thousands—of cuttings, train-
ing data is no longer a limiting factor in
the analysis.

For this case study, the scaled mineral
dataset and textural data were divided
into a training versus testing dataset at a
ratio of 1-to-2. The outcome from the
training dataset was compared with the
testing dataset, and it was found that the
precision of the match peaked at ~81%.
Figures 4A and 4B show a comparison
between the final machine-driven lithofa-
cies prediction and the “truthed” facies.

FIGURE 4

Figure 4C is a confusion matrix gener-
ated from these datasets, showing a ma-
jority of true positive outcomes.

Case Study Well

In this application, a vertical well lo-
cated in Midland County, Tx., was se-
lected because of its intersection with the
Dean/Spraberry transition, an interval of
established hydrocarbon production
across the Midland Basin and subject to
current lateral well drilling campaigns.
Well success is driven by the ability to
create an effective fracture network in
order to maximize oil recovery.

The Dean formation is composed of a
series of clastic, submarine fan lobes
within the central Midland Basin. The
formation is a series of heterogeneous
pay zones. The productive beds of very
fine-grained sandstones, with clay coats
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inhibiting cementation, are intercalated
with dense siltstones and mudstones,
which are baffles to hydrocarbon flow.
The reservoir zone is heterogeneous with
beds typically less than one foot in thick-
ness and composed of very fine-grained
sands, stacked into amalgamated sand
bodies, which conventional log suites
cannot distinguish.

The Lower Spraberry formation is
composed of mudstones and carbonates,
deposited as gravity flows on a carbon-
ate-influenced slope. Bed thickness is
hugely variable, with the carbonate beds
pinching and swelling within a shale-
dominated interval. Accurately determin-
ing the composition and distribution of
brittle (carbonate) beds has important im-
plications for landing zone placement
and in estimating fracture height growth,
which ultimately controls hydrocarbon
production.

For the purposes of the study, 13 main
lithofacies were defined using mineral-
ogy criteria belonging to carbonate-,
clay- and siliciclastic-dominated groups.
Petrographic control points (mineralogy)
were used as inputs for descriptive statis-
tics to determine the range of key mineral
values and total organic carbon content
within lithofacies.

Reservoir Appraisal

As shown in Figure 5, the Dean con-
tains porous sandstones at the base of the
interval, which decrease in frequency and
sum thickness toward the contact with the
overlying Spraberry. These very fine-
grained sandstones have porosity ranges
of 8%-10%, where calcite and clay con-
tent are both independently less than 10%
(i.e., quartz greater than 90%). An up-
ward increase in calcite- or dolomite-ce-
mented sandstones and siltstones
adversely impacts reservoir quality.

Interval 1 (highlighted in Figure 5) in
the Dean formation is composed of a di-
verse range of sandstones, siltstones and
mudstones with minor carbonates
(dolomitized siltstones). The reservoir fa-



cies in this instance is the clean sand-
stones, which form 24.0% of the cored
lithofacies. Clean sandstone forms 20.3%
of the cuttings proportion over this inter-
val, which is a very close match to the
core proportion. Average quartz volume
in this interval (48.1%) is distributed in
various proportions across all clastic
lithologies. A back calculation from an
average volume theoretically could be
possible, but would be reliant on assump-
tions and circular logic if restricted to log
data (i.e., reliant on VClay logs) as op-
posed to primary data collection from
rock material.

An adjacent uncored well was in-
cluded to test the accuracy of the litho-
typing parameters assigned from the
cored well to an uncored well. The cut-

FIGURE 5

tings lithotypes data in the test well
shows a greater proportion of sandstone
reservoir facies, and a greater proportion
of brittle beds in the overlying Spraberry
(owing to the greater frequency and/or
magnitude of carbonate gravity flows in
this interval). This is in keeping with the
average cleaner GR observed in both the
Dean and the Spraberry formations in
the test well compared with the calibra-
tion well.

However, it must be noted that in the
test well, the intervals with the greatest
proportion of reservoir facies (8,990-9,010
feet), ranging from 30%-40%, all have
quartz volumes from 50%-60%. A hasty
interpretation of average mineral data
could lead to a decision to rule out pay
zones, or to distrust the cuttings data as

nonrepresentative and rely on log data
alone.

This new lithotype dataset, therefore,
allows wells to be ranked and risked on
the basis of cuttings. It can be supported
by log data, but can be used independ-
ently as a dataset to appraise reservoir
quality distribution in terms of the pro-
portion of reservoir facies or seal facies
and provide ground-truthing to log-based
reservoir/pay cut off values (e.g., GR val-
ues of less than 50 API and neutron
porosity values of greater than 0.15).

Landing Zone Appraisal

Interval 2 (highlighted in Figure 5) in
the Spraberry interval is a mix of dolo-
stone, limestone and mudstone in the
cored interval. Carbonate lithofacies form
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31% of the 10-foot core interval. Carbon-
ate-dominated lithotypes form 24.9% of
the ditch-cutting interval, which again is
a very close match with the core. It is im-
portant to note that in both of these ex-
ample intervals, the dominant mineral
does not correspond to a comparable pro-
portion of that end member.

For instance, Interval 2 has an average
carbonate volume of 50.1%, but most of
the carbonate is portioned into “lime-
stone” lithotypes that form only 24.9% of
the interval. These observations can have
important implications for the geome-
chanical behavior of the formation in
terms of fracture propagation and how
the thickness, composition and lateral
continuity of these brittle carbonate beds
vary along lateral well stages.

As illustrated in the Midland Basin ap-
plication, there are strong benefits of de-

lineating lithotypes from cuttings inter-
vals. The end-user has the capacity to
evaluate the distribution of minerals
within each lithotype, allowing for a dy-
namic evaluation of reservoir parameters
(e.g., clay/carbonate volumes or image
porosity) when new rock types are en-
countered in a well. This significantly in-
creases the accuracy of the reservoir
description in comparison with alternative
techniques, which are confined to simply
(homogenized) bulk mineralogy values.
Second, incorporating lithotype distri-
bution in zones where wireline log data
underappreciates the formation hetero-
geneity (as a result of thin bed effects, for
example) can lead to a more accurate ap-
praisal of net reservoir within any given
well or interval. Reservoir models built
from petrophysical logs alone could lead
to upscaling of errors, affecting volumet-

ric calculation by over- or underestimat-
ing reserves within a field. A good core-
to-cuttings calibration utilizing this
lithotyping approach enables an operator
to run multiple wells within a field and
build their reservoir maps on the basis of
a consistent and comprehensive rock-cal-
ibrated petrophysical model.

Ultimately, the ready availability of
cuttings from all wells, combined with the
application of this workflow, allows for
consistent objective lithological descrip-
tion of subsurface formations. The lower
cost of cuttings analysis, compared with
log collection, also allows for the cost-ef-
fective generation of a detailed lithologi-
cal database from cuttings. This database
then becomes an effective tool in mapping
and interpreting the spatial reservoir qual-
ity of a target formation and allows for
more informed landing zone decisions.(J
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