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Summary 
 
Geophysical imaging in the foothills environment is 
typically hampered by complex structures, and the high 
cost of data acquisition in poorly accessible, rugged 
topography. Seismic imaging is particularly difficult due to 
poor signal penetration, steeply dipping structures and 
irregular data coverage. The use of magnetotellurics (MT) 
has become a successful complementary tool, due to good 
sensitivity to the deep resistive targets typically 
encountered below folded sequences of more conductive 
units. 
 
Due to non-uniqueness and resolution limitations, MT 3D 
inversion requires additional constraints in order to recover 
a reliable image. These usually come from geological 
interpretation of available seismic and well data; however it 
is often the case that several competing structural models 
can be derived. We employ a ranking workflow that uses 
MT inversion to assess, via a cross-gradient operator, 
whether the structural models are compatible with the MT 
observations. We further apply 3D non-linear uncertainty 
estimation to address the reliability of the inversion results, 
obtaining a bounding envelope of the resistive anomaly. 
 
Introduction 
 
The geology of the Bolivian Sub-Andean Foothills 
comprises steep topography, thrust faulting, geology with 
sub-vertical dips, and generally complex compressional 
tectonic structures (e.g. Ballard et al, 2018). The large 
regional anticlinal structures hold significant gas 
accumulations and are active exploration targets. Obtaining 
good seismic reflection data continues to be problematic 
due to the effects of steep topography and the complex 
geology which degrades the signal to noise ratio and 
complicates accurate migration images. Strong resistivity 
contrasts exist between the conductive sediments and the 
resistive reservoir in the core of the anticlinal structures, 
and thus MT has been widely used to image these reservoir 
structures (Ravaut et al, 2002). The main drawback to using 
MT is its inability to resolve, from smooth blind inversions, 
the detailed geological structure in and around the 
complicated thrust structures and overturned folds. 
Incorporating known geological or geophysical information 
significantly improves inversion results, yielding more 
accurate and geologically reasonable results. In this abstract 
we build on our previous work using cross gradients 
against structural models to guide MT inversions and to test 
the validity of competing geologic scenarios (Scholl et al., 

2017). This is demonstrated with application to both 
synthetic and real data, and including an uncertainty 
analysis of the final inversion model for the synthetic 
example. 
 
Geological model ranking with cross-gradients 
 
Gallardo and Meju (2003) introduced the cross-gradient 
concept for the joint inversion of different geophysical data 
sets. The idea is to quantify structural similarity between 
two property distributions, rather than inter-property 
correlation, by looking at the norm of the cross-product of 
their gradients (“cross-gradient”). This norm is zero where 
the directions of change in the two models are aligned, or 
where one of the models does not change. We add the 
cross-gradient term as an additional regularization term to 
the inversion cost function 
 

Ψ௑ீ(ܕ) = ࢀࡳࢄ۱்ܕߚ  (2) ܕࡳࢄ۱
 
where CXG is the discrete representation of the volume 
integral of the cross gradient between two different model 
vectors m1 and m2 sampled on the same model grid. For a 
simultaneous joint inversion of two geophysical data sets, 
m1 and m2 are both part of the total model vector m; i.e. m1 
may contain resistivity values while m2 might contain the 
density values, and m is composed by concatenating them. 
The additional cross-gradient regularization term comes 
with its own trade-off parameter β. Using the cross-gradient 
as the only regularization operator does not stabilize the 
inverse process adequately, and so additional 
regularization, e.g. in form of the smoothness term, is 
necessary.  
 
Instead of comparing the model gradients of two different 
property volumes inverted simultaneously, it is also 
possible to introduce a priori gradients derived from an 
auxiliary model or data set. In this case m1 is identical to 
the inverted model vector m, while m2 is the auxiliary a 
priori model that remains unaltered during the inversion. 
Since only the direction of change matters, arbitrary 
numerical values can be used to create an auxiliary model 
resembling geological structures. Alternatively, gradients 
can be defined directly without setting up a model 
containing nominal values, so instead of creating an 
auxiliary model m2, the gradients ∇m2 are used as inversion 
input. Auxiliary models or gradients can then be used in a 
sequence of inversions that try to fit the observed data 
while conforming to the auxiliary models (Figure 1).
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Foothills model de-risking with 3D magnetotellurics 

In this way, geological fabric can be imprinted onto the 
inversion result, and hypothesis testing of competing 
geological models can be carried out. 
 
Synthetic example 
 
In order to validate the proposed approach, we generated a 
realistic synthetic dataset, based on the geological model 
and topography for the area of the field data described in 
the next section. The survey layout consisted of 966 MT 
receivers on a regular grid at 800m spacing, covering an 
area of 36 x 16 km2. The forward simulation mesh was 
made up of 8.8 million cells with 125 m horizontal cell size 
and 15m vertical cell size, growing with depth below 
topography. Full tensor magnetotelluric responses and 
vertical transfer functions were computed between 1000 Hz 
and 10000 s. The synthetic data was corrupted with 
Gaussian noise at a standard deviation of 2.5% of tensor 
row amplitude for impedances and 0.01 for vertical 
magnetic transfer functions. 
 
For inversion, we employed a different mesh of 4.2 million 
cells, with a 200 m horizontal cell size and 25 m vertical 
cell size. This was done with the objective to introduce 
errors in discretization of topography, ultimately resulting 
in response distortion, which is a typical issue with datasets 
acquired in a rugged topography. The simulation model 
(Figure 2) consisted of a sequence of folded mixed clastics 
of variable conductivity (15 to 50 ohm-m), overlaying a 
target layer of 200 ohm-m. Finally, a flat crystalline 
basement layer of 100 ohm-m was placed at -8000 m asl. 
The folded overburden sequence was extracted from the 
geological model, while the target layer was inserted ad 
hoc, with the objective to assess its recovery by means of 
3D inversion. Starting models for 3D inversions were 

uniform at 20 ohm-m and included the flat basement layer 
at 100 ohm-m. 
 
To simulate uncertainty in the geological model building, 
and to test our ranking workflow, we generated three 
reference models to use for cross-gradient constraining, 
comprising displaced variations of the folded sequence 
(Figure 3). The surface dip and strike were kept at their 
correct values, which would be well constrained in real 
cases. No target horizon was added to the steering models, 
in order to let the inversion recover the resistor without 
bias. We carried out a suite of 3D inversions, comprising 
one unconstrained run and three cross-gradients steered 
inversions, one for each of the three geological model 
scenarios. The results for one model slice are shown in 
Figure 4, where colors represent the constrained runs and 
contours are extracted from the unconstrained inversion. 
All these inversions fit the data to the noise level 
(normalized RMS error of 1), illustrating the non-
uniqueness issue in magnetotelluric inversion; the 
differences can be ascribed to the steering models. 

 
Figure 3 Simulation of geological model uncertainty used to test 
the model ranking workflow. Structures have been deformed in 3D 
with a smooth displacement field, while honoring the surface dip 
and strike which would be well constrained during geological 
model building. 

Figure 1 Workflow for cross-gradients based geological model 
assessment and ranking. A sequence of inversions is performed, 
comprising a blind (unconstrained) inversion and a cross-gradients 
steered inversion for each of the geological model scenarios. In the 
assessment phase, model interpretation together with inversion 
statistics are used to determine the most compatible geological 
model. 

Figure 2 Slice from 3D model used in the synthetic example. The 
resistive target in red is a thrust-thickened sandstone at 3600-
6000 m depth bgl, overlain by a folded mixed clastic sequence of 
variable conductivities. 
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Foothills model de-risking with 3D magnetotellurics 

 
Figure 4 Result of model ranking workflow. Panels (a), (b) and (c) 
show the steered inversion in color and the unconstrained result as 
gray contours. Respective reference models are shown using white 
contours. Panel (a) corresponds to the best geological model 
hypothesis that would have been chosen within this suite of models. 
 
We inspect the results looking for the model that fits the 
data, conforms to the structural constraints, and produces a 
well defined anomaly at the location of an expected thrust-
thickening of the resistive formation for each scenario. 
Panel (a) satisfies this requirement: this geological model 
would have been chosen as the most compatible and is in 
fact corresponding to the correct geometry. Panels (b) and 
(c) created smeared anomalies. 

Model uncertainty estimation 
 
Geophysical inverse problems are non-unique. Through 
regularization and the use of a priori information we can 
derive stable and geologically reasonable inversion models. 
Providing an analysis of the model uncertainty is necessary 
for the critical task of separating inversion artifacts from 
robust geological features. Bayesian inference is a widely 
used approach but is not tractable for large three-
dimensional electromagnetic problems. Another approach 
based on an extremal bound analysis, however, called 
“most squares” (Jackson, 1976; Meju and Hutton, 1992) 
shows great promise for quantifying model uncertainty and 
is computationally feasible (Mackie et al, 2018).  Extremal 
bound analysis performed for each parameter in a large 
commercial sized 3D inverse model volume remains 
computationally challenging. However, it was shown that 
by carrying out extremal bound analysis on a region of 
interest using an appropriate 3D binary mask, then the 
maximum and minimum model bounds could be computed 
by very little additional cost beyond the original 3D 
inversion.  
 

 
Figure 5 Result of targeted uncertainty estimation with most 
squares. Panel (a) shows the binary mask of voxels in the 3D 
model where estimation was performed, selected by means of a 
resistivity threshold. The iso-surfaces in panel (b) show the least 
squares solution (central black shell) and the extremal bounds 
from most-squares analysis (inner and outer white shells). Panel 
(c) shows a cross-section of the same iso-surfaces through the 
center of the anomaly. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Foothills model de-risking with 3D magnetotellurics 

We applied this localized uncertainty estimation to the 
synthetic model described in the previous section and 
obtained 3D uncertainty bounds on the recovered resistor 
(Figure 5). Combining the geological model ranking with 
the uncertainty estimation, we argue we are adding 
significant information to the exploration problem, by not 
only assessing the structural model, but by also determining 
how reliable the target recovery is.  
 
Application to MT data in the Bolivian foothills 
 
TOTAL E&P Bolivie acquired MT data in the sub-Andean 
foothills of Bolivia over the Incahuasi field in 2013, using 
broadband MT systems. The objective of the survey is to 
image the Huamampampa formation, characterized by 
increased resistivity at depths of about 5-6 km bgl. The 
workflow applied above to the synthetic scenario has been 
applied to the real acquired data in a suite of inversions 
where we perturbed the current working geological model 
down to the Los Monos formation (i.e. excluding 
Huamampampa and deeper levels), to assess whether our 
methodology would be valuable in discriminating the most 
likely structural model. All inversions started from a two-
layer model of homogenous 30 ohm-m over a 100 ohm-m 
basement inserted at 8km asl, and regularization 
(smoothing) control is for deviations from this starting 
model. The results are shown in Figure 6. The broad 
resistive anomaly from the blind inversion result under the 
thrusted foothills gets narrowed due to steep, lateral 
gradients in the geological models, and as a result the deep 
resistor gets vertically distributed, and its wider part pushed 
underneath the constrained cover where possible. The most 
focused result is obtained with the current geological 
working model A, where the anomaly is located centrally 
underneath the thrust zone. For scenario B the anomaly is 
pushed further down at the same lateral position, which is 
not compatible with the position where an updoming of the 
resistive Huamampampa formation would be expected. For 
scenario C the resistor is not well recovered, and is 
compensated by a general increase in resistivity within the 
post Huamampampa units. The same settings were used in 
all cross-gradient constrained inversions. Data fit is similar 
for these, with a normalized RMS of 1.4 and a slightly 
better fit using the current geological model as reference. 
Therefore the working geological model is most consistent 
with the MT inversion results. 
 
Conclusions 
 
We introduced a workflow for geological model 
assessment and ranking based on the use of 3D inversion 
with cross-gradients. The outcome of the procedure 
consists of a geophysical model (resistivity) as well as a 
validation of the geological model hypothesis which is 
most compatible with the observations. The value of this 

approach in complex environments such as the South 
American foothills has been validated for a synthetic case 
and applied on a real exploration dataset. We further 
showed the application of most-squares inversion 
uncertainty estimation to determine the reliability of the 
recovered resistor. This workflow is completely generic; 
applied here to MT, it can be used for any kind of 
geophysical method involving non-linear 3D inversion (e.g. 
gravity, MT, seismic tomography, Soyer et al 2018).  
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Figure 6 Real data 3D MT inversion results (color) along a W-E 
line, using cross-gradients to structural reference models: (a) 
current geological model A, (b)/(c) scenarios B/C. Contours are 
blind inversion (gray) and the structural reference models (white). 

(a) 

(b) 

(c) 
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