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Summary 
We show how the method recently proposed in Messud et al. (2017; 2017b) allows consideration of “resolved 
space” tomographic uncertainties which are complementary information to the total tomographic uncertainties. 
Resolved space uncertainties are obtained by restricting the tomography model space to the one that can be 
resolved by tomography. Total uncertainties mostly quantify the illumination uncertainties, whereas resolved space 
uncertainties tend to be more correlated to the final tomography model. We illustrate how those two uncertainties 
give complementary information for the subsequent seismic interpretation. 
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Introduction 

 

Seismic imaging deliveries are a basis for seismic interpretation and downstream E&P activities. The 
accuracy of the positioning of imaged seismic reflectors greatly depends on the migration “velocity” 
model (“velocity” here stands for all anisotropy parameters), since it directly affects lateral and 
vertical positioning and thus the shape of migrated structures. Several publications have addressed the 
estimation of structural uncertainties within the frame of ray-based tomography (Duffet and Sinoquet, 
2006; Osypov et al., 2013), the most widely used tool in the industry for velocity model building. 
They typically involve two main steps after final tomography: first the generation of a set of 
consistent perturbed velocities by exploration of the a posteriori probability density function (PDF) 
within the Gaussian approximation; second, computation of statistical uncertainty attributes (such as 
depth standard deviations) for key horizons after migrations in perturbed models.  
 
Likewise, Messud et al. (2017) recently proposed an original approach where the exploration of the a 

posteriori PDF is performed along the equi-probable contour related to the standard deviation 
confidence level, thus optimizing the exploration of the PDF without any information loss under the 
Gaussian approximation. Unlike previous approaches (Osypov et al., 2013), this one is applied in a 
non-linear tomography context with the advantage of providing a QC of the validity of the Gaussian 
approximation. This has been described by Messud et al. (2017b) and illustrated by Messud et al. 
(2017) and Reinier et al. (2017).  
 
Here, we develop further our approach by limiting computation of uncertainties to the “resolved 
space”. Tomography problems mix two sources of information: input data (picks) and regularizations. 
In “total space” uncertainties, regularizations and illumination contributions dominate over the input 
data contribution. As a consequence, total uncertainties largely tend to quantify the uncertainties 
related to regularizations and illumination (Messud et al., 2017). In this situation, minimal model 
space restriction is considered in the computation of the perturbations. Complementary information 
could be obtained by computing uncertainties which are constrained more by the input data than by 
the regularizations. This can be achieved by restricting the computation of the perturbations to the 
model space that can be resolved by tomography, i.e. the space constrained only by input data. As it 
leads to velocity perturbations that are more structurally consistent, the resolved space uncertainties 
tend to be more correlated to the final tomography velocity. The use of this complementary 
information is illustrated below. 
 
Compute perturbations in resolved space 

 
Uncertainties relating to velocity model parameters can be evaluated by developing a PDF around the 
model obtained by final tomography, which is assumed to be the maximum likelihood model. This 
model is denoted by a vector 𝒎0 of dimension N (in practice N ranges from 500,000 to 50 million 
parameters). A method proposed by Messud et al. (2017b) assumes that the PDF has a Gaussian 
distribution in a sufficiently large interval. It computes equi-probable velocity model perturbations 
that bound the standard deviation-like (or 68.3%) confidence level, defined by 
 

∆𝒎 = 𝛼 𝑩 𝜹𝒓     ,    𝜹𝒓+𝜹𝒓 = 1      ,            (1) 
where 𝛼 is a scalar computed from the quantile of order 68.3% of the Chi-squared 
distribution, “+” denotes the matrix transpose and 𝜹𝒓 is a unit random vector of dimension N 
allowing to generate the perturbations. 𝑩 is a “square root” of the inverse of the tomography 
Hessian N×N matrix built from the linearized tomographic forward operator, data quality 
factors and the tomography regularizations (amongst other a Tikhonov regularization 
expressed as IN,  being a damping level fixed a priori). We approximate 𝑩 by an eigenvalue 
decomposition of the Hessian (EVD) (Zhang and McMechan, 1995) which is restricted to 
eigenvalues greater than 𝜀. p is the corresponding number of eigenvectors. The effect of the 
non-computed 𝑁 − 𝑝 eigenvectors is approximated by 𝜀𝑰𝑁. After manipulations using the 
binomial inverse theorem (Osypov et al, 2013; Messud et al, 2017), we obtain 
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𝑩 = 𝑩𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 +  𝑩𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑                                      (2) 
𝑩𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑫𝑽𝑝 (∆𝑝 + 𝜀𝑰𝑝)

−1/2
𝑽𝑝

+    ,       𝑩𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑫(𝑰𝑁 − 𝑽𝑝𝑽𝑝
+)𝜀−1/2 

 

𝑽𝑝 and ∆𝑝 contain the p eigenvectors and eigenvalues. Because an EVD cannot mix different physical 
quantities, we introduced the diagonal and invertible matrix 𝑫 to simply rescale, within the EVD, the 
various physical units in the model space and possibly compensate for subsurface illumination.  
 
From eq. (2) we see that two contributions appear in 𝑩: 

 𝑩𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 drives the contribution in ∆𝒎 of the eigenvectors with eigenvalues above the priori 
damping level , which span the so-called tomography resolved space. As those eigenvectors are 
greatly constrained by the tomography input data, so are the related perturbations ∆𝒎𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 =
𝛼 𝑩𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑  𝜹𝒓 . They tend to be more structurally consistent and smooth (because tomography 
resolves the large wavelengths of the velocity model), as illustrated in Fig. 1c. 

 𝑩𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 drives the contribution in the uncertainties of eigenvectors eigenvalues below , 
which span the tomography “unresolved space”. This space represents the effective null space of 
full tomography, constrained only by the regularizations and not by the input data. The related 
perturbations ∆𝒎𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 = 𝛼 𝑩𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑  𝜹𝒓 are less structurally consistent, but are not 
without interest. They give information focused on what tomography cannot resolve, mainly 
related to illumination issues, which is a major source of uncertainties. 

 
Total perturbations as shown in eq. (1), are given by the sum of both contributions. An example is 
given in Fig. 1b. 
 
Computing uncertainty attributes 

 
Uncertainty attributes can be computed statistically using the obtained set of perturbations for both 
total space, using the {∆𝒎}, and resolved space, using the {∆𝒎𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑}. For example: 

 Tomography velocity error bars: Error bars on 𝒎0 (for instance on Vp and ε models) can be 
computed by considering the maximum possible variations of the model perturbations. Reinier 
et al. (2017) give an illustration for the total space. 

 Horizon error bars: Map (or zero-offset kinematic) migrations can be performed in each 
perturbation to obtain a set of horizon perturbations that can be proven to be equi-probable and 
to bound the standard deviation-like confidence region (Messud et al., 2017b). A depth error bar 
can be defined as the maximum possible depth variation of the horizon perturbations (Messud et 
al., 2017b). Lateral (x and y-directions) error bars can be computed using the same principle, 
from differences of position between rays traced in 𝒎0 and rays traced in the perturbed model.  

 
Originality of our method 

 
In their method, Osypov et al (2013) use an equation similar to eq. (2). A key difference from our 
method is that their matrix 𝑫 is related to the tomography regularizations they use, amongst other 
steering filters (that are non-invertible, with their own null space). As a consequence, their 
perturbations are always projected on their tomography regularizations, leading to structurally 
consistent perturbations. Nothing can be explored in the null space of the steering filters. 
 
In our method 𝑫 has no relation to tomography regularizations and is fully invertible. As a 
consequence, we can compute total uncertainties that account for the null space of the full 
tomography (or unresolved space). This is significant because the major contribution to uncertainties 
comes from what tomography cannot resolve, which can be quantified by the total uncertainties. We 
can also restrict the model space to structurally more consistent perturbations and compute the 
resolved space uncertainties. We now illustrate how those uncertainties give complementary 
information. 
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3D field data example 

 

The real data example is typical of the North Sea area with the usual challenges (shallow channels, 
strong vertical velocity contrasts, etc.). The method was tested in the context of a depth velocity 
model building for INEOS. The data, acquired with conventional marine acquisition, is used to 
illustrate the horizon uncertainties in both resolved and total spaces. A TTI model with 5 layers was 
updated iteratively using both full waveform inversion up to 13 Hz and ray-based tomography. 200 
model perturbations were computed in each layer simultaneously for Vp and ε parameters.  
 
Fig 1 shows the Vp model component of one perturbation in the resolved space ∆𝒎𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 versus the 
total perturbation ∆𝒎 = ∆𝒎𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 + ∆𝒎𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑. The resolved space perturbation looks more 
organized than the total perturbation, smoother, and more correlated to structures and the tomography 
final model. The total perturbation with the same parametrization looks more random and higher 
frequency, mainly because the tomography unresolved space is large and thus a dominant contributor 
to the total perturbation (i.e. the magnitude of ∆𝒎𝑢𝑛−𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 is larger, here approximately 4 times, 
than the magnitude of ∆𝒎𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑).  
 

 
Figure 1 Vp model (Left) and perturbations, displayed on sections and extracted on the Top Chalk 

horizon. Middle: Total space. Right: Resolved space.  

 
Figure 2 Error bars in depth z-direction. Left: Total space. Middle: Resolved space. Right: Vp 

extracted above the horizon. 

 
Figure 3 Error bars in x-direction for the resolved subspace of Top Chalk horizon (Left). Zoom of 

error bar and of Vp depth slice above the horizon (Right). 
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The Top Chalk key horizon was map migrated into the 200 generated perturbed models and 
associated error bars computed. Fig. 2 shows depth error bars width, in total and resolved spaces. The 
total depth error bars are dominated by the acquisition illumination variations, less illumination 
resulting in higher uncertainties. The narrow canyon in the middle of the map is incompletely 
illuminated and therefore appears with larger error bars. Resolved space depth error bars appear to be 
correlated to high frequency velocity variations: local significant vertical or lateral velocity variations 
tend to produce higher uncertainties. For instance, the localized higher Vp in the layer above Top 
Chalk generates higher uncertainties in resolved space (see surrounded areas in Fig. 2). Those error 
bars are also correlated with the reliability and richness of the picks (mainly characterized by angle 
diversity) that feed the tomography (Messud et al., 2017).  
 
Lateral (x-direction) horizon error bars in resolved space are shown in Fig. 3. Again, their hierarchies 
tend to be correlated with velocity variations: subtle lateral velocity variations (due to faults aligned 
along the y-direction) perpendicular to the x-direction tend to generate higher lateral horizon error 
bars. Thus in this case the x-direction error bars tend to underline the faults. Higher velocity variations 
produce higher uncertainties. 
 
Both total and resolved space uncertainties provide detailed information on the subsurface, but from 
different points of view. Total uncertainties quantify the illumination uncertainties and resolved space 
uncertainties highlight more the local velocity variation effects.  
 
Conclusions 

 
We have presented a method providing uncertainties in the tomography resolved space in complement 
to total uncertainties. Resolved space uncertainties tend to be more correlated to the final tomography 
model (as they are obtained from perturbations that follow the structures). Total uncertainties mostly 
quantify the illumination uncertainties. 
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